First Semester B.E. Degree Examination, April - 2021

Elements of Electronics Engineering

Time: 3 hrs.
Course Code: 20ELN16
Max. Marks: 100
Note: Answer any Five full questions, choosing ONE full question from each module.

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Q. } \\
\text { No. }
\end{gathered}
\] \& \& MODULE-1 \& Marks \\
\hline 1 \& a.
b.
c. \& \begin{tabular}{l}
Explain the operation of a PN Junction diode under forward and reverse biased conditions with the help of VI characteristics. \\
Discuss the working of Half wave rectifier with circuit diagram and waveforms. Show that efficiency of half wave rectifier is \(40.6 \%\). \\
Design Zener voltage regulator for the following specifications: \\
Input Voltage \(=10 \mathrm{~V} \pm 20 \%\), \\
Output Voltage \(=5 \mathrm{~V}\),
\[
\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}
\] \\
\(\mathrm{I}_{\mathrm{Z}} \min =5 \mathrm{~mA}\) and \(\mathrm{I}_{\mathrm{Z}} \max =80 \mathrm{~mA}\).
\end{tabular} \& 8
7
5 \\
\hline \& \& OR \& \\
\hline 2 \& \begin{tabular}{l}
a. \\
b. \\
c.
\end{tabular} \& \begin{tabular}{l}
Discuss DC load line of a PN Junction diode. \\
A Half wave rectifier uses a transformer with turns ratio 2:1, the load resistance is \(500 \Omega\) If the primary voltage is 240 V . Calculate peak inverse voltage and Dc Voltage What is the need for a capacitive filter? Explain Full wave rectifier with capacitor filter.
\end{tabular} \& \[
\begin{aligned}
\& \hline 6 \\
\& 7 \\
\& 7 \\
\& \hline
\end{aligned}
\] \\
\hline \& \& MODULE - 2 \& \\
\hline 3 \& a.
b.

c. \& | Explain the working and frequency response of an RC- Coupled amplifier. |
| :--- |
| Determine the dc bias voltage V_{CE} and the current I_{c} for the voltage divider configuration of Figure 3(b). |
| Fig. 3(b) |
| Discuss the working principles of RC- phase shift oscillator using BJT. | \& 7

6

7

\hline \& \& OR \&

\hline 4 \& a. \& Determine R_{B} and R_{C} for the transistor inverter shown in Fig. 4(a) if $\mathrm{I}_{\text {csat }}=10 \mathrm{~mA}$ \& 7

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& b \& \begin{tabular}{l}
Fig. 4(a). \\
Explain Colpitts oscillator with circuit diagram and write the expression for the frequency of oscillation. \\
Explain the working of fixed bias circuit and also obtain the expressions for \(\mathrm{I}_{\mathrm{B}}\) and \(\mathrm{V}_{\mathrm{CE}}\).
\end{tabular} \& 6

7

\hline \& \& MODULE - 3 \&

\hline 5 \& a.
b.

c.

c. \& | Obtain an expression for the output voltage of an Inverting Amplifier using Op-amp and find the output voltage of a inverting amplifier with Vin $=2 \mathrm{~V}, \mathrm{Rf}=500 \mathrm{k} \Omega$ and $\mathrm{R} 1=100 \mathrm{k} \Omega$. |
| :--- |
| Find the output voltage for the circuit shown in Fig. 5 (b). |
| Fig. 5 (b) |
| Define the following terms with respect to Op-Amp and mention the typical values for IC 741 Op-Amp (i) CMRR (ii) Slew rate (iii) Input Bias Current (iv) Supply Voltage Rejection Ratio. | \& 5

4
4
8

\hline \& \& OR \&

\hline 6 \& a.
b.

c. \& | Explain the working principle of Inverting Schmitt Trigger with input and output waveforms. |
| :--- |
| Design an adder circuit using Op-amp to obtain an output voltage of $\mathrm{V} 0=-\left[2 \mathrm{~V}_{1}+\right.$ $\left.3 \mathrm{~V}_{2}+5 \mathrm{~V}_{3}\right]$. Assume $\mathrm{R}_{\mathrm{f}}=10 \mathrm{k} \Omega$. |
| Explain zero crossing detector using Op-amp and sketch the input and output waveforms | \& 7

7
6

\hline \& \& MODULE - 4 \&

\hline 7 \& a. \& | Perform the following operations: |
| :--- |
| i) $(\mathrm{BCDE})_{16 \rightarrow}(\text { ? })_{2 \rightarrow} \rightarrow(?)_{10}$ |
| ii) $(526.44)_{10 \rightarrow}(?)_{2 \rightarrow}(?)_{16}$ |
| iii) $(10111101.0101)_{2} \rightarrow(?)_{10 \rightarrow(?)_{16}}$ |
| Deduce a Full adder using two half adders and write the truth table and logical expressions. |
| Explain the working of an SR flip-flop with logic diagram and truth table. | \& 6

7
7

\hline
\end{tabular}

		OR	
8	a. b. c. d. d.	Perform 1's and 2's Complement Subtraction for (28) $10-(47)_{10}$. Implement 4:1 Multiplexer using logic gates. Explain the working of a JK flip-flop with help of Truth table. List the Comparison between Combinational and Sequential logic Circuits.	5 5 5 5
MODULE - 5			
9	a. b. c.	What is amplitude modulation? Deduce an expression for transmitted power in terms of carrier power. What is modulation and explain the need for modulation. A carrier of 1 MHz with 400 watts of its power is amplitude modulated with a sinusoidal signal of 2500 Hz . The depth of modulation is 75%. Calculate the sideband frequencies, the band width, the power in the side bands and the total power in the modulated wave.	6 7
		OR	
10	a. b. c.	Explain the block diagram of basic Communication System. Discuss different types of Electronic Communication. A 100 MHz carrier wave is frequency modulated by a 10 Khz sinusoidal modulating signals. If the maximum frequency deviation is 50 KHz . find the modulation index.	7 7 6

